Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
2.
Mol Psychiatry ; 28(5): 1960-1969, 2023 May.
Article in English | MEDLINE | ID: mdl-36604603

ABSTRACT

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of ß-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.

3.
Biochim Biophys Acta Biomembr ; 1865(2): 184084, 2023 02.
Article in English | MEDLINE | ID: mdl-36368636

ABSTRACT

The lipid composition of cellular membranes and the balance between the different lipid components can be impacted by aging, certain pathologies, specific diets and other factors. This is the case in a subgroup of individuals with psychiatric disorders, such as schizophrenia, where cell membranes of patients have been shown to be deprived in polyunsaturated fatty acids (PUFAs), not only in brain areas where the target receptors are expressed but also in peripheral tissues. This PUFA deprivation thus represents a biomarker of such disorders that might impact not only the interaction of antipsychotic medications with these membranes but also the activation and signaling of the targeted receptors embedded in the lipid membrane. Therefore, it is crucial to understand how PUFAs levels alterations modulate the different physical properties of membranes. In this paper, several biophysical approaches were combined (Laurdan fluorescence spectroscopy, atomic force microscopy, differential scanning calorimetry, molecular modeling) to characterize membrane properties such as fluidity, elasticity and thickness in PUFA-enriched cell membranes and lipid model systems reflecting the PUFA imbalance observed in some diseases. The impact of both the number of unsaturations and their position along the chain on the above properties was investigated. Briefly, data revealed that PUFA presence in membranes increases membrane fluidity, elasticity and flexibility and decreases its thickness and order parameter. Both the level of unsaturation and their position affect these membrane properties.


Subject(s)
Fatty Acids, Unsaturated , Membrane Fluidity , Humans , Fatty Acids, Unsaturated/chemistry , Membranes , Cell Membrane/metabolism , Microscopy, Atomic Force
4.
Molecules ; 26(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770851

ABSTRACT

Plasmon waveguide resonance (PWR) is a variant of surface plasmon resonance (SPR) that was invented about two decades ago at the University of Arizona. In addition to the characterization of the kinetics and affinity of molecular interactions, PWR possesses several advantages relative to SPR, namely, the ability to monitor both mass and structural changes. PWR allows anisotropy information to be obtained and is ideal for the investigation of molecular interactions occurring in anisotropic-oriented thin films. In this review, we will revisit main PWR applications, aiming at characterizing molecular interactions occurring (1) at lipid membranes deposited in the sensor and (2) in chemically modified sensors. Among the most widely used applications is the investigation of G-protein coupled receptor (GPCR) ligand activation and the study of the lipid environment's impact on this process. Pioneering PWR studies on GPCRs were carried out thanks to the strong and effective collaboration between two laboratories in the University of Arizona leaded by Dr. Gordon Tollin and Dr. Victor J. Hruby. This review provides an overview of the main applications of PWR and provides a historical perspective on the development of instruments since the first prototype and continuous technological improvements to ongoing and future developments, aiming at broadening the information obtained and expanding the application portfolio.


Subject(s)
Equipment Design/history , Surface Plasmon Resonance , History, 20th Century , Surface Plasmon Resonance/history , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods
5.
Sci Total Environ ; 797: 149144, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34346359

ABSTRACT

Coastal environments are a predominant ultimate destination of marine debris, becoming a key focus of studies assessing microplastic (MP) contamination. Here, we described the visible fraction of MP (from 0.5 to 5 mm) that washed up during the high tide at different sites of a semi-enclosed mesotidal bay and investigated the main abiotic factors driving MP beaching. Three contrasted beaches of the Arcachon Bay (SW France) were monitored on a monthly basis during 2019. Samplings were made along a 100 m longitudinal transect at the high-water strandline (4 quadrats of 0.25m2) and at an intermediate tidal range. Each sampled particle was characterized by morphometric data (e.g. size, shape, color, roughness) and polymer identification was performed by ATR-FTIR technique. Results show that MP concentration was higher on the beach located at the mouth of the bay (36.0 ± 39.2 MP.m-2) than at the back and the outside of the bay (respectively 2.7 ± 4.4 and 1.7 ± 2.4 MP.m-2). This may be related to the strong currents at the entry of the embayment and the beach orientation, exposed to predominant winds. Beached MP were mainly pre-production pellets and fragments as they represented respectively 49% and 39% of all analyzed shapes. Polymers with low density were particularly abundant. Polyethylene represented 69% of all the particles while polypropylene accounted for 17% and polystyrene for 10%. We also observed that MP were mostly washed up when wind, waves and river flow were more intense. Analysis suggest that wind direction and speed are key factors influencing beaching as strong onshore wind enhance this process.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , France , Plastics , Rivers , Water Pollutants, Chemical/analysis
7.
Biochim Biophys Acta Biomembr ; 1862(6): 183215, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32061645

ABSTRACT

The biophysical characterisation of membrane proteins and their interactions with lipids in native membrane habitat remains a major challenge. Indeed, traditional solubilisation procedures with detergents often causes the loss of native lipids surrounding membrane proteins, which ultimately impacts structural and functional properties. Recently, copolymer-based nanodiscs have emerged as a highly promising tool, thanks to their unique ability of solubilising membrane proteins directly from native membranes, in the shape of discoidal patches of lipid bilayers. While this methodology finally set us free from the use of detergents, some limitations are however associated with the use of such copolymers. Among them, one can cite the tedious control of the nanodiscs size, their instability in basic pH and in the presence of divalent cations. In this respect, many variants of the widely used Styrene Maleic Acid (SMA) copolymer have been developed to specifically address those limitations. With the multiplication of new SMA copolymer variants and the growing interest in copolymer-based nanodiscs for the characterisation of membrane proteins, there is a need to better understand and control their formation. Among the techniques used to characterise the solubilisation of lipid bilayer by amphipathic molecules, cryo-TEM, 31P NMR, DLS, ITC and fluorescence spectroscopy are the most widely used, with a consensus made in the sense that a combination of these techniques is required. In this work, we propose to evaluate the capacity of Microfluidic Diffusional Sizing (MDS) as a new method to follow copolymer nanodiscs formation. Originally designed to determine protein size through laminar flow diffusion, we present a novel application along with a protocol development to observe nanodiscs formation by MDS. We show that MDS allows to precisely measure the size of nanodiscs, and to determine the copolymer/lipid ratio at the onset of solubilisation. Finally, we use MDS to characterise peptide/nanodisc interaction. The technique shows a promising ability to highlight the pivotal role of lipids in promoting interactions through a case study with an aggregating peptide. This confirmed the relevance of using the MDS and nanodiscs as biomimetic models for such investigations.


Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Microfluidics/methods , Nanostructures/chemistry , Animals , Diffusion , Humans , Lipid Bilayers/metabolism , Maleates/chemistry , Membrane Proteins/metabolism , Particle Size , Peptides/metabolism , Polymers/chemistry , Polystyrenes/chemistry , Solubility
8.
FEBS J ; 286(18): 3664-3683, 2019 09.
Article in English | MEDLINE | ID: mdl-31116904

ABSTRACT

The transient receptor potential ankyrin 1 (TRPA1) channel is a polymodal sensor of environmental irritant compounds, endogenous proalgesic agents, and cold. Upon activation, TRPA1 channels increase cellular calcium levels via direct permeation and trigger signaling pathways that hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2 ) in the inner membrane leaflet. Our objective was to determine the extent to which a putative PIP2 -interaction site (Y1006-Q1031) is involved in TRPA1 regulation. The interactions of two specific peptides (L992-N1008 and T1003-P1034) with model lipid membranes were characterized by biophysical approaches to obtain information about affinity, peptide secondary structure, and peptide effect in the lipid organization. The results indicate that the two peptides interact with lipid membranes only if PIP2 is present and their affinities depend on the presence of calcium. Using whole-cell electrophysiology, we demonstrate that mutation at F1020 produced channels with faster activation kinetics and with a rightward shifted voltage-dependent activation curve by altering the allosteric constant that couples voltage sensing to pore opening. We assert that the presence of PIP2 is essential for the interaction of the two peptide sequences with the lipid membrane. The putative phosphoinositide-interacting domain comprising the highly conserved F1020 contributes to the stabilization of the TRPA1 channel gate.


Subject(s)
Lipid Metabolism/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipids/chemistry , TRPA1 Cation Channel/chemistry , Biophysical Phenomena , Calcium/chemistry , HEK293 Cells , Humans , Kinetics , Membrane Potentials/genetics , Peptides/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phospholipids/metabolism , Protein Structure, Secondary , Signal Transduction/genetics , TRPA1 Cation Channel/genetics
9.
Proc Natl Acad Sci U S A ; 110(43): 17199-204, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24108356

ABSTRACT

We have created unique near-infrared (NIR)-emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb(3+) lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb(3+) NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 µg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.


Subject(s)
Lanthanoid Series Elements/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Near-Infrared/methods , Ytterbium/chemistry , Animals , Crystallization , HeLa Cells , Humans , Lanthanoid Series Elements/pharmacokinetics , Metal Nanoparticles/ultrastructure , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , NIH 3T3 Cells , Photons , Polyvinyl Chloride/analogs & derivatives , Polyvinyl Chloride/chemistry , Polyvinyl Chloride/pharmacokinetics , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction , Ytterbium/pharmacokinetics
11.
Biol Cell ; 105(7): 277-88, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23517500

ABSTRACT

BACKGROUND INFORMATION: Autofluorescence spectroscopy is a powerful tool for molecular histology and for following metabolic processes in biological samples as it does not require labelling. However, at the microscopic scale, it is mostly limited to visible and near infrared excitation of the samples. Several interesting and naturally occurring fluorophores can be excited in the UV and deep UV (DUV), but cannot be monitored in cellulo nor in vivo due to a lack of available microscopic instruments working in this wavelength range. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. RESULTS: To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. CONCLUSIONS: In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology.


Subject(s)
Bone and Bones/cytology , Cytological Techniques , Histological Techniques , Microscopy, Fluorescence/methods , Stem Cells/cytology , Zea mays/cytology , Animals , Cell Biology/instrumentation , HeLa Cells , Histology/instrumentation , Humans , Microscopy, Fluorescence/instrumentation , Osteocytes/cytology , Rats , Ultraviolet Rays
12.
Dalton Trans ; 42(17): 6046-57, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23296398

ABSTRACT

There is a growing interest in the development of new medical diagnostic tools with higher sensibility and less damage for the patient body, namely on imaging reporters for the management of diseases and optimization of treatment strategies. This article examines the properties of a new class of lanthanide complexes with a tripodal tris-3-hydroxy-4-pyridinone (tris-3,4-HOPO) ligand - NTP(PrHP)(3). Among the studies herein performed, major relevance is given to the thermodynamic stability of the complexes with a series of Ln(3+) ions (Ln = La, Pr, Gd, Er, Lu) and to the magnetic relaxation properties of the Gd(3+) complex. This hexadentate ligand enables the formation of (1 : 1) Ln(3+) complexes with high thermodynamic stability following the usual trend, while the Gd-chelates show improved relaxivity (higher hydration number), as compared with the commercially available Gd-based contrast agents (CAs); transmetallation of the Gd(3+)-L complex with Zn(2+) proved to be thermodynamically and kinetically disfavored. Therefore, NTP(PrHP)(3) emerges as part of a recently proposed new generation of CAs with prospective imaging sensibility gains.


Subject(s)
Contrast Media/chemical synthesis , Coordination Complexes/chemistry , Lanthanoid Series Elements/chemistry , Magnetics , Pyridones/chemistry , Contrast Media/chemistry , Coordination Complexes/chemical synthesis , Diagnostic Imaging , Gadolinium/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Ligands , Thermodynamics
13.
Radiat Res ; 177(6): 738-42, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22551504

ABSTRACT

The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor.


Subject(s)
Alanine/genetics , Escherichia coli , Lac Repressors/genetics , Lac Repressors/metabolism , Mutagenesis/genetics , Mutagenesis/radiation effects , DNA/metabolism , Lac Repressors/chemistry , Mutation/radiation effects , Protein Stability/radiation effects , Protein Structure, Secondary/radiation effects , Protein Structure, Tertiary/radiation effects , Temperature
14.
Biochem Biophys Res Commun ; 418(4): 689-94, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22293200

ABSTRACT

Neurofibromatosis type 1 is a common genetic disease that causes nervous system tumors, and cognitive deficits. It is due to mutations within the NF1 gene, which encodes the Nf1 protein. Nf1 has been shown to be involved in the regulation of Ras, cAMP and actin cytoskeleton dynamics. In this study, using immunofluorescence experiments, we have shown a partial nuclear localization of Nf1 in the astrocytoma cell line: CCF and we have demonstrated that Nf1 partially colocalizes with PML (promyelocytic leukemia) nuclear bodies. A direct interaction between Nf1 and the multiprotein complex has further been demonstrated using "in situ" proximity ligation assay (PLA).


Subject(s)
Astrocytes/enzymology , Cell Nucleus/enzymology , Neurofibromin 1/metabolism , Astrocytoma/enzymology , Cell Line, Tumor , Humans , Multiprotein Complexes/metabolism
15.
Chemistry ; 18(5): 1419-31, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22213187

ABSTRACT

A series of novel triazole derivative pyridine-based polyamino-polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd(3+) and near-infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln(3+) complexes, as assessed by pH potentiometric measurements, are in the range log K(LnL)=17-19, with a high selectivity for lanthanides over Ca(2+), Cu(2+), and Zn(2+). The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd(3+) chelates. The water exchange of the Gd(3+) complexes (k(ex)(298)=7.7-9.3×10(6) s(-1)) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV(≠)=7.2-8.8 cm(3) mol(-1)). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl-triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet-state energies associated with good quantum yields for both Nd(3+) and Yb(3+) complexes. Cellular and in vivo toxicity studies in mice evidenced the non-toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd(3+) and the luminescent lanthanide complexes, respectively.


Subject(s)
Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Amidinotransferases , Animals , HeLa Cells , Humans , Ligands , Liver/enzymology , Luminescence , Magnetic Resonance Imaging/methods , Mice , Models, Chemical , Molecular Structure , Spectroscopy, Near-Infrared/methods , Temperature , Triazoles/chemistry
16.
Inorg Chem ; 51(4): 2522-32, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22233349

ABSTRACT

In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the optimization of the optical properties of the luminescent lanthanide complexes in comparison to the pyridinic analogues and provides significant shifts of the excitation energies toward lower values which therefore become more adapted for biological applications. L2 and L3 bear two methoxy substituents on the aromatic core in ortho and para positions, respectively, that further modulate their electronic structure. The Nd(3+) and Yb(3+) complexes of the ligand L3, which incorporates the p-dimethoxyisoquinoline moiety, can be excited up to 420 nm. This wavelength is shifted over 100 nm toward lower energy in comparison to the pyridine-based analogue. The luminescence quantum yields of the Nd(3+) (0.013-0.016%) and Yb(3+) chelates (0.028-0.040%) are in the range of the best nonhydrated complexes, despite the presence of two inner sphere water molecules. More importantly, the 980 nm NIR emission band of YbL3 was detected with a good sensitivity in a proof of concept microscopy experiment at a concentration of 10 µM in fetal bovine serum. Our results demonstrate that even bishydrated NIR lanthanide complexes can emit a sufficient number of photons to ensure sensitive detection in practical applications. In particular, these ligands containing an aromatic core with coordinating pyridine nitrogen can be easily modified to tune the optical properties of the NIR luminescent lanthanide complexes while retaining good complex stability and MRI characteristics for the Gd(3+) analogues. They constitute a highly versatile platform for the development of bimodal MR and optical imaging probes based on a simple mixture of Gd(3+) and Yb(3+)/Nd(3+) complexes using an identical chelator. Given the presence of two inner sphere water molecules, important for MRI applications of the corresponding Gd(3+) analogues, this result is particularly exciting and opens wide perspectives not only for NIR imaging based on Ln(3+) ions but also for the design of combined NIR optical and MRI probes.


Subject(s)
Contrast Media/chemistry , Isoquinolines/chemistry , Lanthanoid Series Elements/chemistry , Luminescent Agents/chemistry , Magnetic Resonance Imaging , Contrast Media/chemical synthesis , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Isoquinolines/chemical synthesis , Lanthanoid Series Elements/chemical synthesis , Luminescence , Luminescent Agents/chemical synthesis , Magnetic Resonance Imaging/methods , Spectroscopy, Near-Infrared/methods , Thermodynamics
17.
PLoS One ; 6(4): e19440, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21559378

ABSTRACT

The diffusion of antibiotics in endocarditis vegetation bacterial masses has not been described, although it may influence the efficacy of antibiotic therapy in endocarditis. The objective of this work was to assess the diffusion of ofloxacin in experimental endocarditis vegetation bacterial masses using synchrotron-radiation UV fluorescence microspectroscopy. Streptococcal endocarditis was induced in 5 rabbits. Three animals received an unique i.v. injection of 150 mg/kg ofloxacin, and 2 control rabbits were left untreated. Two fluorescence microscopes were coupled to a synchrotron beam for excitation at 275 nm. A spectral microscope collected fluorescence spectra between 285 and 550 nm. A second, full field microscope was used with bandpass filters at 510-560 nm. Spectra of ofloxacin-treated vegetations presented higher fluorescence between 390 and 540 nm than control. Full field imaging showed that ofloxacin increased fluorescence between 510 and 560 nm. Ofloxacin diffused into vegetation bacterial masses, although it accumulated in their immediate neighborhood. Fluorescence images additionally suggested an ofloxacin concentration gradient between the vegetation peripheral and central areas. In conclusion, ofloxacin diffuses into vegetation bacterial masses, but it accumulates in their immediate neighborhood. Synchrotron radiation UV fluorescence microscopy is a new tool for assessment of antibiotic diffusion in the endocarditis vegetation bacterial masses.


Subject(s)
Endocarditis, Bacterial/drug therapy , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Ofloxacin/pharmacology , Synchrotrons , Animals , Anti-Bacterial Agents/pharmacology , Diffusion , Heart Valves/microbiology , Principal Component Analysis , Rabbits , Streptococcus sanguis/metabolism , Ultraviolet Rays
18.
J Phys Chem B ; 115(8): 1881-8, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21291224

ABSTRACT

The present work investigates the effects of H/D isotopic substitution on the structural and thermodynamic stability of bovine serum albumin (BSA) in aqueous solution over the temperature range of 5-90 °C. Using far-ultraviolet circular dichroism, we have compared protein unfolding pathways in H(2)O and D(2)O. Our results show that BSA possesses similar conformations in H(2)O and D(2)O at temperatures below 50 °C but follows different unfolding pathways at higher temperatures. The presence of D(2)O retards the occurrence of irreversible thermal denaturation in BSA, as evidenced by a higher onset temperature of 58 °C, in contrast to 50 °C in H(2)O. D(2)O exhibits a protective effect on the domain structure during the early stages of domain denaturation. Following incubation at 90 °C over a period of minutes, D(2)O causes a rapid aggregation of BSA molecules. This behavior is not observed in H(2)O solutions. Meanwhile, H/D substitution does not influence the reversible structural transformation of the protein in a significant manner. Partly renatured BSA in H(2)O and D(2)O undergoes very similar reversible structural transformations during a second heating cycle.


Subject(s)
Hydrogen/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Circular Dichroism , Deuterium/chemistry , Deuterium Exchange Measurement , Protein Denaturation , Protein Structure, Secondary , Protein Unfolding , Temperature
19.
Microsc Microanal ; 16(5): 507-14, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20738889

ABSTRACT

Use of deep ultraviolet (DUV, below 350 nm) fluorescence opens up new possibilities in biology because it does not need external specific probes or labeling but instead allows use of the intrinsic fluorescence that exists for many biomolecules when excited in this wavelength range. Indeed, observation of label free biomolecules or active drugs ensures that the label will not modify the biolocalization or any of its properties. In the past, it has not been easy to accomplish DUV fluorescence imaging due to limited sources and to microscope optics. Two worlds were coexisting: the spectrofluorometric measurements with full spectrum information with DUV excitation, which lacked high-resolution localization, and the microscopic world with very good spatial resolution but poor spectral resolution for which the wavelength range was limited to 350 nm. To combine the advantages of both worlds, we have developed a DUV fluorescence microscope for cell biology coupled to a synchrotron beamline, providing fine tunable excitation from 180 to 600 nm and full spectrum acquired on each point of the image, to study DUV excited fluorescence emitted from nanovolumes directly inside live cells or tissue biopsies.


Subject(s)
Microscopy, Fluorescence/methods , Synchrotrons , Ultraviolet Rays , HeLa Cells , Humans , Image Processing, Computer-Assisted , Light
20.
Biochemistry ; 49(2): 297-303, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-20000331

ABSTRACT

CPD photolyase enzymatically repairs the major UV-induced lesion in DNA, the cyclobutane pyrimidine dimer (CPD), by photoreversion of the damage reaction. An enzyme-bound reduced flavin (FADH(-)) cofactor functions as photosensitizer. Upon excitation, it transiently transfers an electron to the CPD, triggering scission of the interpyrimidine bonds. After repair completion, the electron returns to the flavin to restore its functional reduced form. A major difficulty for time-resolved spectroscopic monitoring of the enzymatic repair reaction is that absorption changes around 265 nm accompanying pyrimidine restoration are obscured by the strong background absorption of the nondimerized bases in DNA. Here we present a novel substrate for CPD photolyase that absorbs only weakly around 265 nm: a modified thymidine 10-mer with a central CPD and all bases, except the one at the 3' end, replaced by 5,6-dihydrothymine which virtually does not absorb around 265 nm. Repair of this substrate by photolyases from Anacystis nidulans and from Escherichia coli was compared with repair of two conventional substrates: a 10-mer of unmodified thymidines containing a central CPD and an acetone-sensitized thymidine 18-mer that contained in average six randomly distributed CPDs per strand. In all cases, the novel substrate was repaired with an efficiency very similar to that of the conventional substrates (quantum yields in the order of 0.5 upon excitation of FADH(-)). Flash-induced transient absorption changes at 267 nm could be recorded on a millisecond time scale with a single subsaturating flash and yielded very similar signals for all three substrates. Because of its low background absorption around 265 nm and the defined structure, the novel substrate is a promising tool for fast and ultrafast transient absorption studies on pyrimidine dimer splitting by CPD photolyase.


Subject(s)
DNA Repair , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Dimerization , Kinetics , Models, Molecular , Nucleic Acid Conformation , Oxidation-Reduction , Protein Conformation , Quantum Theory , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet , Substrate Specificity , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...